Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Microbiol Spectr ; 11(3): e0464022, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2298025

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a major public health threat globally, especially during the beginning of the pandemic in 2020. Reverse transcription-quantitative PCR (RT-qPCR) is utilized for viral RNA detection as part of control measures to limit the spread of COVID-19. Collecting nasopharyngeal swabs for RT-qPCR is a routine diagnostic method for COVID-19 in clinical settings, but its large-scale implementation is hindered by a shortage of trained health professionals. Despite concerns over its sensitivity, saliva has been suggested as a practical alternative sampling approach to the nasopharyngeal swab for viral RNA detection. In this study, we spiked saliva from healthy donors with inactivated SARS-CoV-2 from an international standard to evaluate the effect of saliva on viral RNA detection. On average, the saliva increased the cycle threshold (CT) values of the SARS-CoV-2 RNA samples by 2.64 compared to the viral RNA in viral transport medium. Despite substantial variation among different donors in the effect of saliva on RNA quantification, the outcome of the RT-qPCR diagnosis was largely unaffected for viral RNA samples with CT values of <35 (1.55 log10 IU/mL). The saliva-treated viral RNA remained stable for up to 6 h at room temperature and 24 h at 4°C. Further supplementing protease and RNase inhibitors improved the detection of viral RNA in the saliva samples. Our data provide practical information on the storage conditions of saliva samples and suggest optimized sampling procedures for SARS-CoV-2 diagnosis. IMPORTANCE The primary method for detection of SARS-CoV-2 is using nasopharyngeal swabs, but a shortage of trained health professionals has hindered its large-scale implementation. Saliva-based nucleic acid detection is a widely adopted alternative, due to its convenience and minimally invasive nature, but the detection limit and direct impact of saliva on viral RNA remain poorly understood. To address this gap in knowledge, we used a WHO international standard to evaluate the effect of saliva on SARS-CoV-2 RNA detection. We describe the detection profile of saliva-treated SARS-CoV-2 samples under different storage temperatures and incubation periods. We also found that adding protease and RNase inhibitors could improve viral RNA detection in saliva. Our research provides practical recommendations for the optimal storage conditions and sampling procedures for saliva-based testing, which can improve the efficiency of COVID-19 testing and enhance public health responses to the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Saliva , Clinical Laboratory Techniques/methods , RNA, Viral/genetics , RNA, Viral/analysis , Endoribonucleases
2.
Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi ; 2023.
Article in English | EuropePMC | ID: covidwho-2263481

ABSTRACT

Background Understanding the neutralizing antibody (NAb) titer against COVID-19 over time is important to provide information for vaccine implementation. The longitudinal NAb titer over one year after SARS-CoV-2 infection is still unclear. The purposes of this study are to evaluate the duration of the neutralizing NAb titers in COVID-19 convalescents and factors associated with the titer positive duration. Methods A cohort study followed COVID-19 individuals diagnosed between 2020 and 2021 May 15th from the COVID-19 database from the Taiwan Centers for Disease Control. We analyzed NAb titers from convalescent SARS-CoV-2 individuals. We used generalized estimating equations (GEE) and a Cox regression model to summarize the factors associated with NAb titers against COVID-19 decaying in the vaccine-free population. Results A total of 203 convalescent subjects with 297 analytic samples were followed for a period of up to 588 days. Our study suggests that convalescent COVID-19 in individuals after more than a year and four months pertains to only 25% of positive titers. The GEE model indicates that longer follow-up duration was associated with a significantly lower NAb titer. The Cox regression model indicated the disease severity with advanced condition was associated with maintaining NAb titers (adjusted hazard ratio: 2.08, 95% CI: 1.12–3.61) and that non-smoking also was associated with maintaining NAb titers (adjusted hazard ratio: 1.69, 95% CI: 1.08–2.64). Conclusions Neutralizing antibody titers diminished after more than a year. The antibody titer response against SARS-CoV-2 in naturally convalescent individuals provides a reference for vaccinations.

3.
J Microbiol Immunol Infect ; 56(3): 506-515, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2263484

ABSTRACT

BACKGROUND: Understanding the neutralizing antibody (NAb) titer against COVID-19 over time is important to provide information for vaccine implementation. The longitudinal NAb titer over one year after SARS-CoV-2 infection is still unclear. The purposes of this study are to evaluate the duration of the neutralizing NAb titers in COVID-19 convalescents and factors associated with the titer positive duration. METHODS: A cohort study followed COVID-19 individuals diagnosed between 2020 and 2021 May 15th from the COVID-19 database from the Taiwan Centers for Disease Control. We analyzed NAb titers from convalescent SARS-CoV-2 individuals. We used generalized estimating equations (GEE) and a Cox regression model to summarize the factors associated with NAb titers against COVID-19 decaying in the vaccine-free population. RESULTS: A total of 203 convalescent subjects with 297 analytic samples were followed for a period of up to 588 days. Our study suggests that convalescent COVID-19 in individuals after more than a year and four months pertains to only 25% of positive titers. The GEE model indicates that longer follow-up duration was associated with a significantly lower NAb titer. The Cox regression model indicated the disease severity with advanced condition was associated with maintaining NAb titers (adjusted hazard ratio: 2.01, 95% CI: 1.11-3.63) and that smoking was also associated with higher risk of negative NAb titers (adjusted hazard ratio: 0.55, 95% CI: 0.33-0.92). CONCLUSIONS: Neutralizing antibody titers diminished after more than a year. The antibody titer response against SARS-CoV-2 in naturally convalescent individuals provides a reference for vaccinations.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Cohort Studies , Taiwan/epidemiology , Antibodies, Neutralizing , Antibodies, Viral
4.
Emerg Microbes Infect ; : 1-45, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2242558

ABSTRACT

Numerous vaccines have been developed to address the current COVID-19 pandemic, but safety, cross-neutralizing efficacy, and long-term protectivity of currently approved vaccines are still important issues. In this study, we developed a subunit vaccine, ASD254, by using a nanoparticle vaccine platform to encapsulate the SARS-CoV-2 spike receptor-binding domain (RBD) protein. As compared with the aluminum-adjuvant RBD vaccine, ASD254 induced higher titers of RBD-specific antibodies and generated 10- to 30-fold more neutralizing antibodies. Mice vaccinated with ASD254 showed protective immune responses against SARS-CoV-2 challenge, with undetectable infectious viral loads and reduced typical lesions in lung. Besides, neutralizing antibodies in vaccinated mice lasted for at least one year and were effective against various SARS-CoV-2 variants of concern, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, particle size, polydispersity index, and zeta potential of ASD254 remained stable after 8-month storage at 4°C. Thus, ASD254 is a promising nanoparticle vaccine with good immunogenicity and stability to be developed as an effective vaccine option in controlling upcoming waves of COVID-19.

5.
J Biomed Sci ; 29(1): 49, 2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-1923546

ABSTRACT

BACKGROUND: With the continuous emergence of new SARS-CoV-2 variants that feature increased transmission and immune escape, there is an urgent demand for a better vaccine design that will provide broader neutralizing efficacy. METHODS: We report an mRNA-based vaccine using an engineered "hybrid" receptor binding domain (RBD) that contains all 16 point-mutations shown in the currently prevailing Omicron and Delta variants. RESULTS: A booster dose of hybrid vaccine in mice previously immunized with wild-type RBD vaccine induced high titers of broadly neutralizing antibodies against all tested SARS-CoV-2 variants of concern (VOCs). In naïve mice, hybrid vaccine generated strong Omicron-specific neutralizing antibodies as well as low but significant titers against other VOCs. Hybrid vaccine also elicited CD8+/IFN-γ+ T cell responses against a conserved T cell epitope present in wild type and all VOCs. CONCLUSIONS: These results demonstrate that inclusion of different antigenic mutations from various SARS-CoV-2 variants is a feasible approach to develop cross-protective vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Humans , Mice , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
6.
Vaccines (Basel) ; 10(2)2022 Feb 17.
Article in English | MEDLINE | ID: covidwho-1708024

ABSTRACT

BACKGROUND: The ChAdOx1 nCoV-19 vaccine has been widely administered against SARS-CoV-2 infection; however, data regarding its immunogenicity, reactogenicity, and potential differences in responses among Asian populations remain scarce. METHODS: 270 participants without prior COVID-19 were enrolled to receive ChAdOx1 nCoV-19 vaccination with a prime-boost interval of 8-9 weeks. Their specific SARS-CoV-2 antibodies, neutralizing antibody titers (NT50), platelet counts, and D-dimer levels were analyzed before and after vaccination. RESULTS: The seroconversion rates of anti-RBD and anti-spike IgG at day 28 after a boost vaccination (BD28) were 100% and 95.19%, respectively. Anti-RBD and anti-spike IgG levels were highly correlated (r = 0.7891), which were 172.9 ± 170.4 and 179.3 ± 76.88 BAU/mL at BD28, respectively. The geometric mean concentrations (GMCs) of NT50 for all participants increased to 132.9 IU/mL (95% CI 120.0-147.1) at BD28 and were highly correlated with anti-RBD and anti-spike IgG levels (r = 0.8248 and 0.7474, respectively). Body weight index was statistically significantly associated with anti-RBD IgG levels (p = 0.035), while female recipients had higher anti-spike IgG levels (p = 0.038). The GMCs of NT50 declined with age (p = 0.0163) and were significantly different across age groups (159.7 IU/mL for 20-29 years, 99.4 IU/mL for ≥50 years, p = 0.0026). Injection-site pain, fever, and fatigue were the major reactogenicity, which were more pronounced after prime vaccination and in younger participants (<50 years). Platelet counts decreased and D-dimer levels increased after vaccination but were not clinically relevant. No serious adverse events or deaths were observed. CONCLUSION: The vaccine is well-tolerated and elicited robust humoral immunity against SARS-CoV-2 after standard prime-boost vaccination in Taiwanese recipients.

7.
Lancet Respir Med ; 9(12): 1396-1406, 2021 12.
Article in English | MEDLINE | ID: covidwho-1621134

ABSTRACT

BACKGROUND: MVC-COV1901, a recombinant protein vaccine containing pre-fusion-stabilised spike protein S-2P adjuvanted with CpG 1018 and aluminium hydroxide, has been shown to be well tolerated with a good safety profile in healthy adults aged 20-49 years in a phase 1 trial, and provided a good cellular and humoral immune responses. We present the interim safety, tolerability, and immunogenicity results of a phase 2 clinical trial of the MVC-COV1901 vaccine in Taiwan. METHODS: This is a large-scale, double-blind, randomised, placebo-controlled phase 2 trial done at ten medical centres and one regional hospital in Taiwan. Individuals aged 20 years or older who were generally healthy or had stable pre-existing medical conditions were eligible for enrolment. Exclusion criteria included (but were not limited to) travel overseas within 14 days of screening, intention to travel overseas within 6 months of the screening visit, and the absence of prespecified medical conditions, including immunosuppressive illness, a history of autoimmune disease, malignancy with risk to recur, a bleeding disorder, uncontrolled HIV infection, uncontrolled hepatitis B and C virus infections, SARS-CoV-1 or SARS-CoV-2 infections, an allergy to any vaccine, or a serious medical condition that could interfere with the study. Study participants were randomly assigned (6:1) to receive two doses of either MVC-COV1901 or placebo, administered via intramuscular injection on day 1 and day 29. MVC-COV1901 contained 15 µg of S-2P protein adjuvanted with 750 µg CpG 1018 and 375 µg aluminium hydroxide in a 0·5 mL aqueous solution, and the placebo contained the same volume of saline. Randomisation was done centrally by use of an interactive web response system, stratified by age (≥20 to <65 years and ≥65 years). Participants and investigators were masked to group assignment. The primary outcomes were to evaluate the safety, tolerability, and immunogenicity of MVC-COV1901 from day 1 (the day of the first dose) to day 57 (28 days after the second dose). Safety was assessed in all participants who received at least one dose. Immunogenicity was assessed by measuring geometric mean titres (GMTs) and seroconversion rates of neutralising antibody and antigen-specific IgG in the per-protocol population. This study is registered with ClinicalTrials.gov, NCT04695652. FINDINGS: Of 4173 individuals screened between Dec 30, 2020, and April 2, 2021, 3854 were enrolled and randomly assigned: 3304 to the MVC-COV1901 group and 550 to the placebo group. A total of 3844 participants (3295 in the MVC-COV1901 group and 549 in the placebo group) were included in the safety analysis set, and 1053 participants (903 and 150) had received both doses and were included in the per-protocol immunogenicity analysis set. From the start of this phase 2 trial to the time of interim analysis, no vaccine-related serious adverse events were recorded. The most common solicited adverse events in all study participants were pain at the injection site (2346 [71·2%] of 3295 in the MVC-COV1901 group and 128 [23·3%] of 549 in the placebo group), and malaise or fatigue (1186 [36·0%] and 163 [29·7%]). Fever was rarely reported (23 [0·7%] and two [0·4%]). At 28 days after the second dose of MVC-COV1901, the wild-type SARS-CoV-2 neutralising antibody GMT was 662·3 (95% CI 628·7-697·8; 408·5 IU/mL), the GMT ratio (geometric mean fold increase in titres at day 57 vs baseline) was 163·2 (155·0-171·9), and the seroconversion rate was 99·8% (95% CI 99·2-100·0). INTERPRETATION: MVC-COV1901 has a good safety profile and elicits promising immunogenicity responses. These data support MVC-COV1901 to enter phase 3 efficacy trials. FUNDING: Medigen Vaccine Biologics and Taiwan Centres for Disease Control, Ministry of Health and Welfare.


Subject(s)
Adjuvants, Immunologic , Aluminum Hydroxide , COVID-19 Vaccines/immunology , COVID-19 , HIV Infections , Oligodeoxyribonucleotides , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Double-Blind Method , Humans , Middle Aged , SARS-CoV-2 , Taiwan , Young Adult
8.
Applied Sciences ; 11(22):10661, 2021.
Article in English | MDPI | ID: covidwho-1512088

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a serious threat to human health worldwide. The inactivation of SARS-CoV-2 on object surfaces and in the indoor air might help to halt the COVID-19 pandemic. Far-ultraviolet light (UVC) disinfection has been proven to be highly effective against viruses and bacteria. To understand the wavelength and duration of UVC radiation required for SARS-CoV-2 inactivation, we examined the efficacy of UVC light prototype devices with the wavelengths of 275, 254, and 222 nm. The disinfection effectiveness was determined by cell-based assays including the median tissue culture infectious dose (TCID50) and an immunofluorescent assay on African green monkey kidney epithelial Vero E6 cells. Among the three prototypes, the UVC LED (275 nm) had the best virucidal activity with a log-reduction value (LRV) >6 after 10 s of exposure. The mercury lamp (254 nm) reached similar virucidal activity after 20 s of exposure. However, the excimer lamp (222 nm) showed limited anti-SARS-CoV-2 activity with a LRV < 2 after 40 s of exposure. Overall, in comparison, the UVC LED (275 nm) exhibited superior SARS-CoV-2 disinfection activity than the mercury lamp (254 nm) and the excimer lamp (222 nm).

SELECTION OF CITATIONS
SEARCH DETAIL